Segnali per le comunicazioni - Appello del 7/9/2024

Gli esercizi devono essere svolti nel tempo massimo di 2h

Esercizio 1

Sia dato il sistema LTI con risposta all'impulso $h(t) = \frac{\sin(\pi 6(t-1))}{\pi(t-1)} \cos(\pi 3t + \frac{1}{4}\pi)$

- **A**) Si calcoli l'espressione analitica della risposta in frequenza H(f)
- **B**) Si traccino i grafici di modulo e fase della trasformata di Fourier di $y(t) = h(t) * \frac{\sin(\pi t)}{\pi t}$ (suggerimento: semplificate per quanto possibile l'espressione analitica di Y(f) raccogliendone i termini comuni...)

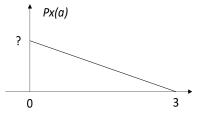
Esercizio 2

Si campioni il segnale tempo continuo $x(t) = \sin(2\pi t) + \sin(4\pi t) + \sin(8\pi t)$ con frequenza di campionamento $f_s = 5$ ottenendo il segnale x_n .

- ${\bf A}$) Si traccino i grafici della trasformata di Fourier del segnale x_n sia in frequenza sia in frequenza normalizzata.
- **B**) Si trovi l'espressione del segnale $x_R(t)$ tempo continuo ricostruito dai campioni di x_n .
- **C**) Si trovi l'espressione della DFT dei primi 30 campioni di x_n ($0 \le n \le 29$).

Esercizio 3

Sia dato il processo casuale continuo, stazionario x(t) bianco nella banda -25 < f < 25 Hz. La densità di probabilità del processo $p_x(a)$ è lineare decrescente come in figura.



- **A**) Si scriva l'espressione della funzione di autocorrelazione del processo x(t).
- **B**) Il processo x(t) viene campionato con intervallo di campionamento 1/10 di secondo ottenendo il processo discreto x_n . Si trovi la varianza di $y_n=x_n-2x_{n-1}$.
- **C**) Si genera il processo z_n azzerando i campioni del processo $x_n \le 1$ e lasciando inalterati quelli con $x_n > 1$. Si disegni la densità di probabilità delle ampiezze dei campioni z_n .

Soluzione Esercizio 1 del 7/9/2024

A) La trasformata di Fourier di $h(t) = \frac{\sin(\pi 6(t-1))}{\pi(t-1)}\cos(\pi 3t + \frac{1}{4}\pi)$ ha la seguente espressione:

$$H(f) = \frac{1}{2}e^{j\frac{\pi}{4}}rect\left(\frac{f-\frac{3}{2}}{6}\right)e^{-j2\pi\left(f-\frac{3}{2}\right)} + \frac{1}{2}e^{-j\frac{\pi}{4}}rect\left(\frac{f+\frac{3}{2}}{6}\right)e^{-j2\pi\left(f+\frac{3}{2}\right)}$$

B) La trasformata di Fourier di $y(t) = h(t) * \frac{\sin(\pi t)}{\pi t}$ è

$$Y(f) = X(f)H(f) = H(f) \cdot rect(f)$$

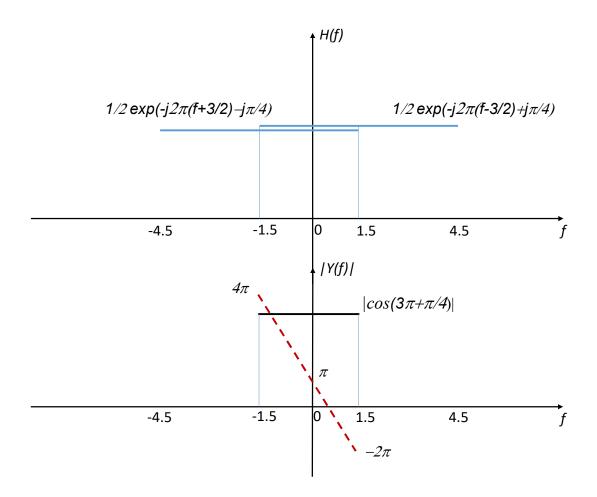
Dunque uguale a H(f) nella banda $-\frac{1}{2} < f < \frac{1}{2}$.

$$Y(f) = \frac{1}{2}e^{j\frac{\pi}{4}}e^{-j2\pi\left(f-\frac{3}{2}\right)} + \frac{1}{2}e^{-j\frac{\pi}{4}}e^{-j2\pi\left(f+\frac{3}{2}\right)}$$

Raccogliendo il termine $e^{-j\{2\pi f\tau\}}$, si ottiene la seguente espressione:

$$Y(f) = \frac{1}{2}e^{-j\{2\pi f\}} \left[e^{j\left\{3\pi + \frac{\pi}{4}\right\}} + e^{-j\left\{3\pi + \frac{\pi}{4}\right\}} \right] = e^{-j\{2\pi f\}} \cos\left(3\pi + \frac{\pi}{4}\right) = -\frac{\sqrt{2}}{2}e^{-j\{2\pi f\}}$$

I grafici di modulo e fase di Y(f) insieme a quello di H(f) sono riportati nella seguente figura.

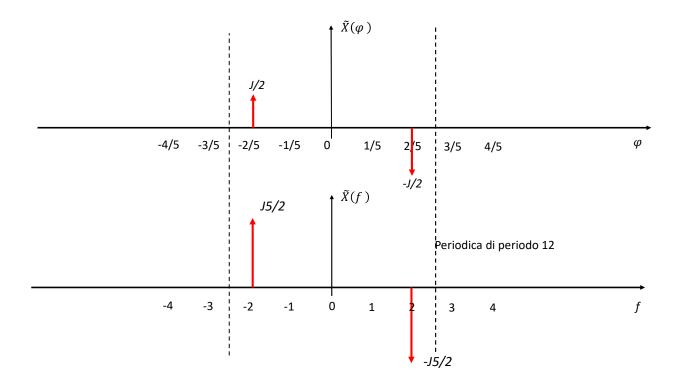


Soluzione Esercizio 2 del del 7/9/2024

A) La trasformata di $x(t) = \sin(2\pi t) + \sin(4\pi t) + \sin(8\pi t)$ è:

$$X(f) = \frac{j}{2} [\delta(f+1) + \delta(f+2) + \delta(f+4) - \delta(f-1) - \delta(f-2) - \delta(f-4)]$$

Con la frequenza di campionamento $f_s=5$ si introduce alias. Le trasformate $\tilde{X}(f)$ e $\tilde{X}(\phi)$ (periodiche di periodo 5 e 1 rispettivamente) sono riportate nelle seguenti figure.



B) L'espressione della trasformata di Fourier del segnale ricostruito è:

$$X_R(f) = \frac{j}{2} [\delta(f+2) - \delta(f-2)]$$

Il segnale ricostruito è quindi:

$$x_R(t) = \sin(4\pi t)$$

C) La DFT dei primi 30 campioni di $x_n = \sin\left(2\pi\frac{2}{5}n\right)$ è:

$$X_k = -15j\delta_{k-1} + 15j\delta_{k-18}$$

Soluzione Esercizio 3 del del 7/9/2024

A) Dai dati del problema la densità di probabilità del processo dato è triangolare da (0,2/3) a (3,0):

$$p_x(a) = \left(\frac{2}{3} - \frac{2}{9}a\right) \cdot rect\left(\frac{a}{3} - \frac{1}{2}\right)$$

Da cui

$$m_x = \int_{-\infty}^{\infty} a \, p_x(a) da = \frac{2}{9} \int_0^3 (3 - a) a \, da = 1$$

$$E[x(t)^2] = \int_{-\infty}^{\infty} a^2 \, p_x(a) da = \frac{2}{9} \int_0^3 (3 - a) a^2 \, da = \frac{3}{2}$$

$$\sigma_x^2 = \frac{3}{2} - 1 = \frac{1}{2}$$

La funzione di autocorrelazione del processo è:

$$R_x(\tau) = \sigma_x^2 \frac{\sin(\pi 50\tau)}{\pi 50\tau} + m_x^2 = \frac{1}{2} \frac{\sin(\pi 50\tau)}{\pi 50\tau} + 1$$

B) Il processo x(t) viene campionato con intervallo di campionamento 1/10 di secondo ottenendo il processo discreto x_n .

$$R_x[m] = \frac{1}{2} \frac{\sin\left(\pi 50 \frac{m}{10}\right)}{\pi 50 \frac{m}{10}} + 1 = \frac{1}{2} \delta_m + 1$$

Il processo è bianco e quindi la varianza della somma di campioni è uguale a somma delle varianze: $\sigma_y^2 = \sigma_x^2 + 4\sigma_x^2 = \frac{5}{2}$.

C) Si genera il processo z_n azzerando i campioni del processo $x_n \leq 1$ e lasciando inalterati quelli con $x_n > 1$. La densità di probabilità delle ampiezze dei campioni z_n ha un impulso in 0 di area (vedi la seguente figura) $1 - 2\frac{4}{9}\frac{1}{2} = \frac{5}{9}$ e la ddp di z_n uguale a quella di x_n per 1 < a < 3.

