<u>SEGNALI PER LE TELECOMUNICAZIONI (Prati)</u> <u>Terzo Appello – 9 Settembre 2016</u>

La prima parte degli esercizi presenta una difficolta' minore rispetto alle successive: se s'incontrano difficoltà nello svolgere un esercizio si consiglia di passare al successivo e rimandare le difficoltà. Il tempo massimo per lo svolgimento della prova è 2h.

ESERCIZIO 1

Sia dato un sistema LTI con risposta in frequenza $H(f) = \left[rect \left(f - \frac{1}{2} \right) * rect \left(f + \frac{1}{2} \right) \right] e^{j2\pi f\tau}$.

- a Si traccino i grafici di modulo e fase della risposta in frequenza H(f).
- **b** Si calcoli l'uscita del sistema all'ingresso $x(t) = \frac{\sin \pi 4(t-2)}{t-2}$.

ESERCIZIO 2

Sia dato il segnale tempo continuo $x(t) = [1 - \cos(2\pi f_o(t - \tau))]^2$.

- **a** Si calcoli la minima frequenza di campionamento f_s per evitare alias in frequenza.
- \mathbf{b} Il segnale dato viene campionato con frequenza di campionamento $f_s = \frac{5}{2} f_o$. Trovare l'espressione del segnale tempo continuo ricostruito dal segnale campionato.

ESERCIZIO 3

Sia dato il processo casuale stazionario discreto x_n gaussiano con varianza $\sigma_x^2 = 4$ e valor medio $m_x = -1$.

I campioni di x_n tra loro adiacenti hanno coefficiente di correlazione $\rho_x[1] = -\frac{1}{2}$ e i campioni più distanti sono tra loro incorrelati.

- **a** Si calcoli autocorrelazione e densità spettrale di potenza del processo x_n .
- **b** Si calcoli l'espressione del valor medio e dell'autocorrelazione del processo $y_n = 4x_n + 2x_{n-1}$

SEGNALI PER LE TELECOMUNICAZIONI (Prati)

<u>Terzo Appello – 9 Settembre 2016</u> <u>SOLUZIONI</u>

ESERCIZIO 1

a – La risposta in frequenza ha modulo triangolare da -1 a 1 (altezza 1 a f=0) e fase lineare che va da $-2\pi\tau$ a $2\pi\tau$ nella banda della risposta in frequenza.

b - La trasformata di Fourier del segnale x(t)è formata da un modulo rettangolare di modulo π , banda 4Hz centrato intorno alla frequenza nulla e fase lineare che va da 8π a -8π nella banda del rettangolo.

La trasformata dell'uscita è

$$Y(f) = tri(f)e^{j2\pi f\tau} \cdot \pi \cdot rect\left(\frac{f}{4}\right)e^{-j4\pi f} = \pi \cdot tri(f)e^{j2\pi f(\tau-2)}$$

L'uscita e' dunque:

$$y(t) = \pi \left(\frac{\sin \pi (t + \tau - 2)}{\pi (t + \tau - 2)} \right)^{2}$$

ESERCIZIO 2

a - La trasformata di Fourier del segnale

$$x(t) = \left[1 - \cos(2\pi f_o(t - \tau))\right]^2 = 1 + \cos^2(2\pi f_o(t - \tau)) - 2\cos(2\pi f_o(t - \tau))$$

è data da

$$X(f) = \left\{ \frac{3}{2} \delta(f) - \left[\delta(f + f_o) + \delta(f - f_o) \right] + \frac{1}{4} \left[\delta(f + 2f_o) + \delta(f - 2f_o) \right] \right\} e^{-j2\pi f\tau}$$

Moltiplicando gli impulsi per l'esponenziale complesso si ottiene:

$$X(f) = \frac{3}{2}\delta(f) - \delta(f + f_o)e^{j2\pi f_o\tau} - \delta(f - f_o)e^{-j2\pi f_o\tau} + \frac{1}{4}\delta(f + 2f_o)e^{j4\pi f_o\tau} + \frac{1}{4}\delta(f - 2f_o)e^{-j4\pi f_o\tau}$$

La minima frequenza di campionamento per evitare alias in frequenza è dunque $4f_o$.

 \mathbf{b} – La frequenza di campionamento utilizzata è $\frac{5}{2}f_o$.

Per ricostruire il segnale tempo-continuo è necessario filtrare passa-basso nella banda $\pm \frac{5}{4} f_o$ la trasformata del segnale campionato che si ottiene replicando a passo $\frac{5}{2} f_o$ la trasformata del segnale continuo.

La trasformata di Fourier del segnale ricostruito è dunque:

$$X(f) = \frac{3}{2} \delta(f) - \delta(f + f_o) e^{j2\pi f_o \tau} - \delta(f - f_o) e^{-j2\pi f_o \tau} + \frac{1}{4} \delta(f - \frac{f_o}{2}) e^{j4\pi f_o \tau} + \frac{1}{4} \delta(f + \frac{f_o}{2}) e^{-j4\pi f_o \tau}$$

L'espressione del segnale tempo continuo ricostruito dal segnale campionato è:

$$x(t) = \frac{3}{2} - e^{-j2\pi f_o \tau} e^{j2\pi f_o t} - e^{j2\pi f_o \tau} e^{-j2\pi f_o t} + \frac{1}{4} e^{j4\pi f_o \tau} e^{j\pi f_o t} + \frac{1}{4} e^{-j4\pi f_o \tau} e^{-j\pi f_o t} =$$

$$= \frac{3}{2} - 2\cos(2\pi f_o(t - \tau)) + \frac{1}{2}\cos(\pi f_o(t + 4\tau))$$

ESERCIZIO 3

a – Dai dati del problema:

$$R_{x}[m] = \sigma_{x}^{2} \delta_{m} - \frac{\sigma_{x}^{2}}{2} \delta_{m-1} - \frac{\sigma_{x}^{2}}{2} \delta_{m+1} + m_{x}^{2} = 4\delta_{m} - 2\delta_{m-1} - 2\delta_{m+1} + 1$$

La densità spettrale di potenza è la trasformata di Fourier dell'autocorrelazione:

$$S_x(\phi) = 4 - 4\cos(2\pi\phi) + \delta(\phi)$$

b - Il processo y_n può vedersi come uscita di un sistema Lineare Tempo Invariante con risposta all'impulso $h_n = 4\delta_n + 2\delta_{n-1}$. L'autocorrelazione dell'uscita è data da:

$$\begin{split} R_{y}[m] &= R_{x}[m] * h_{m} * h_{-m} = \left(4\delta_{m} - 2\delta_{m-1} - 2\delta_{m+1} + 1\right) * \left(20\delta_{m} + 8\delta_{m-1} + 8\delta_{m+1}\right) = \\ &= 8 \cdot \left(6\delta_{m} - \delta_{m-1} - \delta_{m+1} - 2\delta_{m-2} - 2\delta_{m+2}\right) + 36 \end{split}$$

Il valor medio è $m_v = -6$