SEGNALI PER LE TELECOMUNICAZIONI (Prati) prova del 20 Giugno 2012

La prima parte degli esercizi presenta una difficolta' minore rispetto alle successive: se s'incontrano difficolta' nello svolgere un esercizio si consiglia di passare al successivo e rimandare le difficolta'. Il tempo massimo per lo svolgimento della prova e' 2h e15min.

ESERCIZIO 1

- **a** [6] Si traccino i grafici di modulo e fase della trasformata di Fourier X(f) del segnale tempo continuo $x(t) = -\left(\frac{\sin \pi W t}{\pi t}\right)^2$.
- **b** [3] Si calcoli, in funzione di un generico segnale x(t), l'espressione del segnale y(t) che ha come trasformata di Fourier $Y(f) = \frac{1}{2} [X(f f_o) + X(f + f_o)] \cos (2\pi \frac{f}{f_o})$.
- c [2] Si calcoli l'espressione dell'energia del segnale y(t) del punto precedente quando $X(f) = rect \left(\frac{f}{f_a} \right)$.

ESERCIZIO 2

Sia dato il segnale tempo continuo $x(t) = [\cos(4\pi f_o t)\cos(2\pi f_o t)]^2$.

- a [6]- Si calcoli la minima frequenza di campionamento f_s per evitare alias in frequenza.
- **b** [2] Il segnale dato viene campionato con frequenza di campionamento $f_s = 18f_o$. Si traccino i grafici della trasformata di Fourier sia in frequenza che in frequenza normalizzata del segnale campionato.
- **c** [2] –Si calcoli la DFT dei primi 90 campioni del segnale campionato x_n (n da 0 a 89).
- **d** [3] –Si calcoli la DFT dei primi 90 campioni del segnale $y_n = x_n \cdot (-1)^n$ (n da 0 a 89).

ESERCIZIO 3

Sia dato il processo casuale stazionario x(t), con densità di probabilità gaussiana, potenza 8, valor $|1-|2\tau|$ $|\tau| < 0.5$

medio $m_x = -2$ e coefficiente di correlazione $\rho_x(\tau) = \begin{cases} 1 - |2\tau| & |\tau| < 0.5 \\ 0 & altrove \end{cases}$.

Il processo x(t) viene campionato con intervallo di campionamento $T = \frac{1}{6}$, ottenendo il processo discreto x_n .

- **a** [6] Si calcoli valor medio e varianza del processo $y_n = 3x_n 2x_{n-1} x_{n-2}$.
- \mathbf{b} [5] Se un campione di y_n assume il valore 0.8, quale sarà la miglior predizione ai minimi quadrati del campione successivo? Quale la dispersione dell'effettivo valore del campione successivo rispetto al valore predetto?

TELECOMUNICAZIONI PROVA (Prati) – 20 Giugno 2012

SOLUZIONI

ESERCIZIO 1

a – La trasformata di Fourier ha modulo triangolare da -W a W (altezza W a f=0) e fase – π da -W a W(indefinita altrove).

b - La trasformata di Fourier inversa di $\frac{1}{2}[X(f-f_o)+X(f+f_o)]$ è $x(t)\cos(2\pi f_o t)$ quindi

l'antitrasformata di $Y(f) = \frac{1}{2} [X(f - f_o) + X(f + f_o)] \cos(2\pi f/f_o)$ è:

$$y(t) = \frac{1}{2} \left[x \left(t - \frac{1}{f_o} \right) \cos \left(2\pi f_o \left(t - \frac{1}{f_o} \right) \right) + x \left(t + \frac{1}{f_o} \right) \cos \left(2\pi f_o \left(t + \frac{1}{f_o} \right) \right) \right] =$$

$$= \frac{1}{2} \left[x \left(t - \frac{1}{f_o} \right) + x \left(t + \frac{1}{f_o} \right) \right] \cos(2\pi f_o t)$$

c - L'espressione dell'energia del segnale y(t) del punto precedente quando $X(f) = rect \left(\frac{f}{f_o} \right)$ si calcola nel dominio della frequenza:

$$E_{y} = \int \frac{1}{4} [X(f - f_{o}) + X(f + f_{o})]^{2} \cos^{2}(2\pi f/f_{o}) df = \int_{f_{o}/2}^{3f_{o}/2} \frac{1}{4} \cos^{2}(2\pi f/f_{o}) df + \int_{-3f_{o}/2}^{-f_{o}/2} \frac{1}{4} \cos^{2}(2\pi f/f_{o}) df = \frac{1}{4} f_{o}$$

ESERCIZIO 2

a - La trasformata di Fourier del segnale e' data da

$$X(f) = \frac{4}{16}\delta(f) + \frac{3}{16}\delta(f \pm 2f_o) + \frac{2}{16}\delta(f \pm 4f_o) + \frac{1}{16}\delta(f \pm 6f_o)$$

la minima frequenza di campionamento per evitare alias in frequenza è dunque $12f_a$.

 ${\bf b}$ – La frequenza di campionamento utilizzata è $18f_o$. La trasformata di Fourier del segnale campionato è periodica di paeriodo $18f_o$ e vale:

$$X(f) = 18f_o \left[\frac{4}{16} \delta(f) + \frac{3}{16} \delta(f \pm 2f_o) + \frac{2}{16} \delta(f \pm 4f_o) + \frac{1}{16} \delta(f \pm 6f_o) \right]$$

In frequenza normalizzata:

$$X(\phi) = \left[\frac{4}{16} \delta(\phi) + \frac{3}{16} \delta(\phi \pm \frac{1}{9}) + \frac{2}{16} \delta(\phi \pm \frac{2}{9}) + \frac{1}{16} \delta(\phi \pm \frac{3}{9}) \right]$$

c – Il segnale campionato ha la seguente espressione:

$$x_n = \frac{1}{4} + \frac{3}{8}\cos\left(\frac{2\pi n}{9}\right) + \frac{2}{8}\cos\left(\frac{4\pi n}{9}\right) + \frac{1}{8}\cos\left(\frac{6\pi n}{9}\right)$$

La DFT dei primi 90 campioni ha dunque la seguente espressione:

$$X_{k} = \frac{90}{4} \delta_{k} + 90 \frac{3}{16} \delta_{k-10} + 90 \frac{3}{16} \delta_{k-80} + 90 \frac{2}{16} \delta_{k-20} + 90 \frac{2}{16} \delta_{k-70} + 90 \frac{1}{16} \delta_{k-30} + 90 \frac{1}{16} \delta_{k-60}$$

$$\mathbf{d} - y_n = x_n \exp\left\{-j2\pi \frac{N/2}{N}n\right\}$$

La DFT dei primi 90 campioni ha dunque la seguente espressione:

$$\begin{split} Y_k &= X_{k-\frac{N}{2}} = \\ &= \frac{90}{4} \delta_{k-45} + 90 \frac{3}{16} \delta_{k-55} + 90 \frac{3}{16} \delta_{k-35} + 90 \frac{2}{16} \delta_{k-65} + 90 \frac{2}{16} \delta_{k-25} + 90 \frac{1}{16} \delta_{k-75} + 90 \frac{1}{16} \delta_{k-15} \end{split}$$

ESERCIZIO 3

a – Dai dati del problema la varianza del processo continuo è $\sigma_x^2 = P - m_x^2 = 4$ e l'autocorrelazione del processo campionato vale:

$$R_x[m] = 4\delta_m + \frac{8}{3}\delta_{m\pm 1} + \frac{4}{3}\delta_{m\pm 2} + 4$$

Da cui $m_v = 0$ e

$$R_{y}[m] = R_{x}[m] * h_{m} * h_{-m} = \left(4\delta_{m} + \frac{8}{3}\delta_{m\pm 1} + \frac{4}{3}\delta_{m\pm 2} + 4\right) * \left(14\delta_{m} - 4\delta_{m-1} - 4\delta_{m-1} - 3\delta_{m-2} - 3\delta_{m+2}\right)$$

E' inutile calcolarsi tutta l'autocorrelazione perche' il problema chiede solo il valore della varianza che è legata all'autocorrelazione in zero.

E dunque
$$R_y[0] = \frac{80}{3} = \sigma_y^2$$

b - Dai risultati appena ottenuti si ricava il coefficiente di correlazione del processo $y_n = 3x_n - 2x_{n-1} - x_{n-2}$:

$$\rho_{y}[m] = \frac{R_{y}[m]}{80/3}$$

Dato che il processo casuale è gaussiano, la miglior predizione ai minimi quadrati coincide con la miglior predizione lineare che vale:

$$\hat{y}_{n+1} = \rho_x[1] \cdot y_n = \rho_x[1] \cdot 0.8$$

Serve il valore di $\rho_x[1]$:

$$\rho_{y}[1] = \frac{R_{y}[1]}{80/3} = \frac{8}{80/3} = \frac{3}{10}$$

Dunque:

$$\hat{y}_{n+1} = \frac{6}{25}$$

La varianza della densità di probabilità condizionata vale $\sigma_{\hat{y}_{n+1}}^2 = \sigma_y^2 (1 - \rho_x^2 [1]) = 24.7$ e la dispersione della stima vale: $\sigma_{\hat{y}_{n+1}} \approx 4.92$.