

Probabilità e Processi casuali

Laboratorio 5 - Segnali per le Telecomunicazioni

Prof. Prati Claudio Maria

Autore: Federico Borra Politecnico di Milano, DEIB

Email: federico.borra@polimi.it

Aprile'17, Ultima revisione: 28/05/17

Dall'istogramma alla densità di probabilità

- Variabili discrete
 - ➤ Istogramma= grafico delle frequenze relative
- ☐ Variabili continue
 - ➤ Istogramma= grafico delle frequenze relative ottenuto dopo una discretizzazione
- Attenzione: i valori dell'istogramma per le variabili casuali continue, una volta "discretizzate", dipendono dalla dimensione dell'intervallino scelto: più è piccolo l'intervallo più sono bassi i valori dell'istogramma

Dall'istogramma alla densità di probabilità

- \square Per introdurre il concetto di densità di probabilità p(a) di una variabile casuale continua a partire dall'istogramma occorrono i seguenti passi:
 - ➤ 1 Utilizzare intervalli piccoli così da poter ritenere la ddp costante al loro interno
 - ➤ 2 Dividere il valore dell'istogramma per la dimensione dell'intervallino (in modo che il risultato sia indipendente dalla dimensione dell'intervallino)
 - ➤ 3 Utilizzare un numero molto elevato di prove (tanto più elevato quanto più piccolo è l'intervallino) in modo che frequenze relative e probabilità quasi coincidano

Processi casuali

- L'insieme di tutti i segnali deterministici (detti le realizzazioni del processo) generati da altrettante sorgenti uguali, ma indipendenti tra loro
- \square Per descrivere il processo casuale x(t) si utilizzano soprattutto due funzioni:
 - \triangleright La densità di probabilità delle ampiezze del processo p(a)
 - \triangleright La funzione di autocorrelazione del processo $R_{x}(\tau)$
- ☐ Se ci limitiamo a **processi stazionari** entrambe le funzioni NON dipendono dal tempo

Funzione di autocorrelazione

☐ La funzione di autocorrelazione è definita così

$$R_x(\tau) = E\left[x(t)x(t+\tau)\right] \approx \frac{1}{N} \sum_{i=1}^{N} x_i(t)x_i(t+\tau)$$

- ☐ Se le 2 variabili casuali sono indipendenti, la funzione di autocorrelazione coincide con il modulo quadro del valor medio del processo casuale
- \square Se invece la variabile casuale $x(t+\tau)$ dipende dal valore assunto da x(t), allora la funzione di autocorrelazione avrà un valore differente dal modulo quadro del valor medio del processo casuale
- \square L'autocorrelazione in t=0 coincide con la potenza media del processo casuale. $R_x(0)$ è il massimo valore che può assumere l'autocorrelazione

Il colore dei segnali

- □ Una sequenza di campioni è detta *bianca* se i suoi campioni sono incorrelati tra loro e quindi se la funzione di autocorrelazione è nulla per $\tau \neq 0$
- \square Possiamo *colorare* un segnale bianco, x_n filtrandolo con il filtro di risposta all'impulso h_n ottenendo il segnale y_n
- \square Il segnale campionato y_n è ottenuto convolvendo x_n e h_n

$$y_n = \sum_{k=0}^{K} x_{n-k} h_k = x_n * h_n$$

Il colore dei segnali

- ☐ Perché la convoluzione colora i segnali?
- ☐ Esempio:

►
$$E[x_n^2] = 1$$
 $E[x_n x_{n-\tau}] = 0$ $\forall \tau \neq 0$

$$h_0 = h_1 = 1/2$$

$$y_n = \frac{1}{2}(x_n + x_{n-1})$$

☐ Calcoliamo l'autocorrelazione

$$R_y(0) = E[y_n^2] = \frac{1}{4} \left(E[x_n^2] + E[x_{n-1}^2] + 2E[x_n x_{n-1}] \right) = \frac{1}{2}$$

$$R_y(1) = E[y_n y_{n-1}] = \frac{1}{4} E\left[(x_n + x_{n-1}) (x_{n-1} + x_{n-2}) \right] = \frac{1}{4}$$

$$R_y(2) = E[y_n y_{n-2}] = \frac{1}{4} E\left[(x_n + x_{n-1}) (x_{n-2} + x_{n-3}) \right] = 0$$

Lo spettro di potenza

 \Box Lo spettro di potenza $S_y(f)$ è la trasformata di Fourier della funzione di autocorrelazione $R_v(\tau)$

$$S_y(f) = \int_{-\infty}^{+\infty} R_y(\tau) e^{-j2\pi f \tau} d\tau$$

☐ Filtrando un generico segnale x(t) con un filtro avente risposta in frequenza H(f) si ottiene in uscita il segnale y(t) con spettro di potenza

$$S_y(f) = S_x(f)|H(f)|^2$$

☐ La correlazione mutua tra due processi è definita come

$$R_{xy}(\tau) = E[y(t)x(t+\tau)] \approx \frac{1}{N} \sum_{i=1}^{N} y_i(t)x_i(t+\tau)$$

 \square Se i due processi casuali y(t) e x(t) sono rispettivamente l'uscita e l'ingresso di un sistema LTI la loro correlazione mutua è uguale alla convoluzione tra l'autocorrelazione dell'ingresso e la risposta all'impulso del sistema LTI:

$$R_{xy}(\tau) = R_x(\tau) * h(\tau)$$

 \square Se il segnale x(t) è un rumore bianco otteniamo

$$R_{xy}(\tau) = \delta(\tau) * h(\tau) = h(\tau)$$

☐ La correlazione mutua corrisponde con la risposta all'impulso del sistema