## CONVCOS

```
close all
clear
F=1/10;
N=20;
x = cos(2*pi*F*(0:N-1));
M=2;
h=ones(1,M)*1/M;
y=conv(x,h);
figure(1)
stem((0:N-1),x)
hold on
if floor (M/2) *2==M
    L=M/2+1
else
    L=(M+1)/2
end
stem((0:N-1),y(L:N-1+L),'r')
% same as y=conv(x,h,'same')
hold off
% help floor
```

```
% CONVOLUTION EXAMPLE WITH MATLAB
% Author C. Prati
% February 17, 2020
clear
close all
%-----
% Let us generate a discrete cosinusoidal signal x with
% frequency of fo=40Hz, N=200 samples using a sampling interval
% T=1/1000 second
N=200;
fo=40;
T=1/1000;
t = (0:N-1) *T;
x=cos(2*pi*fo*t);
%-----
% 2
% Let us plot the discrete signal x in figure 1
% as a sequence of samples ... from 0 to N-1
figure (1)
stem((0:N-1),x)
title('sequence of samples')
% as a sequence on samples along a time axis t
figure (2)
stem(t,x)
xlabel('time (seconds)')
% as a continuous line connecting the samples
figure (3)
plot(t,x)
pause
§_____
% Let us generate a very simple High Pass Impulse response
% h formed by M=3 samples -1/4 1/2 -1/4
M=3;
h = [-1/4 \ 1/2 \ -1/4];
응 4
% Let us convolve the signal x with the impulse response h
```

```
% forming the output signal y
y=conv(x,h);
pause
%-----
% Let us plot the discrete signal y of length N+M-1 in
% figure 4 as a sequence of samples ... from 0 to N+M-2
% then as a sequence on samples along a time axis t and
% finally as a continuous line connecting the samples
figure (4)
stem((0:N+M-2),y)
pause
stem((0:N+M-2)*T,y)
pause
plot((0:N+M-2)*T,y)
pause
§______
응 6
% Let us repeat the previous convolution example using as
% imput signal x the sum of 2 cosinusoids with frequencies
% f1=20Hz and f2=400Hz. The impulse response h is now Low-pass
% h=[1/4 \ 1/2 \ 1/4] or High-passh=[-1/4 \ 1/2 \ -1/4]
f1=20;
f2=400;
x = cos(2*pi*f1*t) + cos(2*pi*f2*t);
figure (5)
stem(t,x)
pause
h=[1/4 1/2 1/4];
y=conv(x,h);
figure (6)
stem((0:N+M-2)*T,y)
```

## MediaMobile

```
% Eseque una media mobile di 1000 campioni
% su una sequenza di N campioni costituita
% da una cosinusoide a bassissima frequenza
% La media mobile e' eseguita tramite convoluzione con una finestra
% rettangolare di 1000 campioni di valore 1/1000.
close all
clear all
N=11000;
f0=1/5000;
n=1:N;
x=0.25*cos(2*pi*f0*n)+randn(1,N);
plot((1:N-1000),x(501:N-500))
%h=2*ones(1,1000)/1000.*cos(2*pi*f0*(0:999));
h=ones(1,1000)/1000;
y=conv(x,h);
pause
hold on
plot((1:N-1000),y(1001:N),'r')
pause
axis([1 N-1000 -1 1])
```

```
% Filtering Basics
% Author C. Prati
% February 17, 2020
clear
close all
%_____
% Let us generate a discrete impulse response hLP of a Low-Pass
Filter
% The length of the filter in N=64 samples
% The cut-off frequency is fc=200Hz and the sampling frequency is
% fs=2KHz
% The matlab function used to generate h is fir1:
% The general format is hLP = fir1(N,W) where W is the normalized
cut-off
% frequency: W must be between 0 < W < 1.0, with 1.0 corresponding to
half
% the sampling frequency.
N = 64;
fc = 200;
fs=2000;
W=fc/fs*2;
hLP=fir1(N,W);
figure(1)
stem((0:N),hLP,'filled')
title('Low Pass impulse response')
pause
§_____
% Let us generate a discrete impulse response hHP of a High-Pass
Filter
% The length of the filter in N=64 samples
% The cut-off frequency is fc=200Hz and the sampling frequency is
% fs=2KzH.
% The matlab function used to generate h is again fir1:
% The general format is hHP = fir1(N,W,'high') where W is the
normalized cut-off
% W must be between 0 < W < 1.0, with 1.0 corresponding to half the
sampling frequency.
hHP=fir1(N,W,'high');
figure(1)
```

```
clf
stem((0:N),hHP,'filled')
title('high Pass impulse response')
pause
% 3
% Let us generate a discrete impulse response hBP of a Band-Pass
Filter
% The length of the filter in N=64 samples
% The lower and higher cut-off frequencies are f1=100Hz and f2=200Hz
% the sampling frequency is fs=2KzH.
% The matlab function used to generate h is again fir1:
% The general format is hBP = fir1(N,[W1 W2],'bandpass') where W1 ans
% are the normalized cut-off frequencies. W1 and W2 must be between 0
< W < 1.0,
% with 1.0 corresponding to half the sampling frequency.
§_____
N = 64;
f1=100;
f2=200;
fs=2000;
W1=f1/fs*2;
W2=f2/fs*2;
hBP=fir1(N, [W1 W2], 'bandpass');
figure(1)
clf
stem((0:N),hBP,'filled')
title('Band Pass impulse response')
pause
%-----
% Let us generate a chirp signal x using a sampling frequency
fs=2kHz:
% a chirp is a cosinusoid with frequency that linearly varies with
time.
% x = chirp(t,f0,t1,f1) generates samples of a linear swept-frequency
```

```
% signal at the time instances defined in array t. The instantaneous
% frequency at time 0 is f0 Hertz. The instantaneous frequency f1
% is achieved at time t1. By default, f0=0, t1=1, and f1=100.
용_____
T=1/fs;
t = (0:T:2);
f0=10;
f1=300;
t1=2:
x=chirp(t,f0,t1,f1);
figure(1)
clf
plot(t,x)
pause
%-----
% Let us plot the signal y obtained by filtering the chirp x with
% a) the LP filter
% b) the HP filter
% c) the BP filter
§_____
yLP=conv(x,hLP,'same');
yHP=conv(x,hHP,'same');
yBP=conv(x,hBP,'same');
figure (2)
clf
plot(t,yLP)
pause
plot(t,yHP)
pause
plot(t,yBP)
pause
%_____
응 6
% Let us generate boxcar signal x and let's filter it with
% the low-pass, high-pass and bandpass filters
x = zeros(1,500);
x(200:300)=1;
figure(1)
clf
plot(x)
axis([1 500 -.3 1.2])
```

```
pause
yLP=conv(x,hLP,'same');
yHP=conv(x,hHP,'same');
yBP=conv(x,hBP,'same');
figure(2)
clf
plot(x,'r')
hold on
plot(yLP,'b')
axis([1 500 -.3 1.2])
pause
hold off
plot(x,'r')
hold on
plot(yHP,'b')
axis([1 500 -.3 1.2])
pause
hold off
plot(x,'r')
hold on
plot(yBP,'b')
axis([1 500 -.3 1.2])
hold off
```

## Filtering 2D

```
응응응응응응응응응응응응응응
% Let us load a 2D image (e.g.in jpeg format)
8-----
IMAGE=imread('gatto.jpg');
%IMAGE=imread('GEMSclass.jpg');
X = (IMAGE(:,:,1));
%X=(IMAGE(:,:,1));
figure (1)
imagesc(X)
colormap gray
axis('image')
title('original')
pause
% Let us generate a 2D low-pass filter by using the
% fir1 Matlab function in 1D and then the function ftrans2
% which produces filters that are approximately circularly
% The normalized "radial" cut-off frequency is fc=0.1
% The filter length is N=35
%-----
fc=0.1;
Wc=fc*2;
N = 34;
hLP=fir1(N,Wc);
hLP 2D=ftrans2(hLP);
figure(2)
imagesc(hLP 2D)
colormap jet
axis('image')
pause
%-----
% Let us apply the 2D low-pass filter to the original image
%-----
XLP=conv2(X,hLP 2D,'same');
figure (2)
```

```
imagesc(XLP)
colormap gray
axis('image')
title('LP filtered')
pause
%-----
% Let us generate a 2D high-pass filter by using the
% fir1 Matlab function in 1D and then the function ftrans2
% which produces filters that are approximately circularly
% The normalized "radial" cut-off frequency is fc=0.05
% The filter length is N=35
8-----
fc=0.05;
Wc=fc*2;
N = 34;
hHP=fir1(N, Wc, 'high');
hHP 2D=ftrans2(hHP);
figure (2)
imagesc(log(abs(hHP 2D)))
colormap jet
axis('image')
pause
<sub>응</sub> 5
% Let us apply the 2D high-pass filter to the original image
\{-----\}
XHP=conv2(X,hHP 2D,'same');
figure (2)
imagesc(XHP)
colormap gray
axis('image')
title('HP filtered')
```

```
% Fourier Transform Basics
% Author C. Prati
% February 17, 2020
clear
close all
%_____
% Let us generate a discrete cosinusoidal signal x with
% frequency of fo=40Hz, N=50 samples using a sampling interval
% T=1/1000 second
N=50;
fo=40;
T=1/1000;
t = (0:N-1) *T;
x=cos(2*pi*fo*t);
§_____
응 2
% Let us plot the discrete signal x in figure 1
% as a sequence of samples ... from 0 to N-1
figure(1)
subplot (211)
stem((0:N-1),x)
xlabel('samples')
pause
% as a sequence of samples along a time axis t
figure (1)
subplot (212)
stem(t,x)
xlabel('time (seconds)')
pause
%_____
% Let us generate the Fourier Transform X of the discrete signal x
X=fft(x);
\% Let us plot the absolute value and the phase of X in figure 2
\mbox{\%} as a sequence of samples from 0 to N-1
figure(2)
subplot (211)
stem((0:N-1), abs(X))
xlabel('samples')
```

```
title('absolute value')
pause
figure (2)
subplot (212)
stem((0:N-1), angle(X))
xlabel('samples')
title('phase')
pause
%-----
% Let us plot the absolute value of X in figure 3
% as a sequence of samples and as a sequence along a
% normalized frequency axis and as sequence along a
% frequency axis
figure (3)
subplot (311)
stem((0:N-1), abs(X))
xlabel('samples')
pause
subplot (312)
stem((0:N-1)/N,abs(X))
xlabel('normalized frequency')
pause
subplot(313)
stem((0:N-1)/N/T,abs(X))
xlabel('frequency (Hz)')
pause
8-----
응 6
% Let us generate the FFT sequence centered around
% the zero frequency
Xshift=fftshift(X);
%-----
응 7
% Let us plot the absolute value of X in figure 4
\% as a sequence of samples from 0 to N-1 and as a sequence
% of samples from -N/2 to N/2-1
figure (4)
subplot (211)
```

```
stem((0:N-1), abs(X))
xlabel('samples')
pause
subplot (212)
stem((-N/2:N/2-1), abs(Xshift))
xlabel('samples')
pause
% Let us plot the absolute value of X in figure 5
% as a sequence of samples from -N/2 to N/2-1, as a sequence
% along a normalized frequency axis from -1/2 to 1/2 and
% as a sequence of samples along a frequency axis from
% -1/(2T) to 1/(2T)
figure (5)
subplot (311)
stem((-N/2:N/2-1), abs(Xshift))
xlabel('samples')
pause
subplot (312)
stem((-N/2:N/2-1)/N, abs(Xshift))
xlabel('normalized frequency')
pause
subplot (313)
stem ((-N/2:N/2-1)/N/T, abs(Xshift))
xlabel('frequency (Hz)')
%-----
응 9
% Now repeat the same analysis on a diferent signal x
% e.g. x=sinc((-N/2:N/2-1)/4); or x=ifftshift(gausswin(N,12));
```

```
% Fourier Transform Alias
% Author C. Prati
% February 17, 2020
clear
close all
%-----
% Let us generate a discrete cosinusoidal signal x with
% frequency sweeping from f=0Hz to f=1000Hz in step of 50Hz
% N=100 \text{ samples using a sampling interval } T=1/1000 \text{ second}
\mbox{\%} For each frequency, the signal x and its corresponding FFT X
% are plotted
N=100;
T=1/1000;
t = (0:N-1)*T;
tcontinuo=(0:10*N-1)*T/10;
for f=0:50:1000
 x=cos(2*pi*f*t);
 xcontinuo=cos(2*pi*f*tcontinuo);
  figure(1)
 subplot (211)
  stem(t,x)
 xlabel('time (seconds)')
 hold on
 plot(tcontinuo, xcontinuo, 'r')
 hold off
 X=fft(x);
 Xshift=fftshift(X);
 subplot (212)
  stem ((-N/2:N/2-1)/N/T, abs(Xshift), 'filled')
 xlabel('frequency (Hz)')
 pause
end
 pause
%-----
% Let us generate a "continuous" cosinusoidal signal x with
% frequency f1=2Hz spanning a time interval of To=0.99 second.
```

```
% The simulation of a continuous time signal is obtained by
% setting a very high sampling frequency compared with the
% signal frequency. Let us use fs=1000Hz.
fs=1000;
To=0.99;
t = (0:1/fs:To);
f1=2
x=cos(2*pi*f1*t);
%_____
% Let us plot the "continuous" signal x in figure 2
figure(2)
plot(t,x)
xlabel('time')
pause
§_____
응 4
% Let us sample the "continuous" signal x with T=0.05 s.
%(sampling frequency fs=1/T=20Hz)
% Let us plot the obtained samples superimposed to the
% continuous signal x on figure 2.
T=0.05;
nT = (0:T:To);
xn=cos(2*pi*f1*nT);
figure(2)
hold on
stem(nT,xn,'filled','r')
hold off
pause
%-----
% Let us compute the number of sample N of the signal xn
% Let us also check this number N by measuring the length of xn
N=floor(To/T)+1
Nmeasured=length(xn)
pause
%_____
% Let us compute the FFT X of the sampled signal xn and
% let us plot its absolute value in figure 3
```

```
Xn=fft(xn);
Xnshift=fftshift(Xn);
figure (3)
stem((-N/2:N/2-1)/N/T, abs(Xnshift))
xlabel('frequency (Hz)')
%-----
% Let us repeat steps from 2 to 4 by increasing the frequency of the
% "continuous" cosinusoidal signal x from f1=2Hz to f2=(2+1/T) Hz
f2=2+1/T
pause
x2 = cos(2*pi*f2*t);
figure (4)
plot(t, x2)
xlabel('time')
pause
xn2=cos(2*pi*f2*nT);
figure (4)
hold on
stem(nT,xn2,'filled','r')
hold off
pause
%-----
응 8
% Let us compare the samples obtained by sampling this two signals
figure (4)
hold on
plot(t,x,'m')
```

## FASTFT

```
tic
x1=rand(1,500000);
y1=rand(1,500000);
z1=conv(x1,y1);
toc

tic
x=rand(1,500000);
y=rand(1,500000);
X=fft(x);
Y=fft(y);
Z=X.*Y;
z=ifft(Z);
toc
```